#include <stdio.h>
#include <stdint.h>
#include <stdbool.h>
#include <string.h>
#include <stm32f1xx_hal.h>
// Set STM32F103 LED RED (PC13)
#define LED_PORT GPIOB
#define LED_PIN GPIO_PIN_0
#define LED_PORT_CLK_ENABLE __HAL_RCC_GPIOC_CLK_ENABLE
UART_HandleTypeDef huart1;
UART_HandleTypeDef huart2;
ADC_HandleTypeDef adcHandle;
uint16_t adcValue;
/* Private function prototypes */
void SystemClock_Config(void);
void RCC_SystemClock_Config(void);
void GPIO_Init(void);
void GPIO_Output_Config(void);
void ADC_Config(void);
uint16_t ADC_Read(void);
void Error_Handler(const char *error);
uint32_t getCurrentMicros(void);
static void MX_USART1_UART_Init(void);
static void MX_USART2_UART_Init(void);
uint32_t timeOfRun = 0;
uint8_t count = 0;
void SysTick_Handler(void)
{
HAL_IncTick();
// 1 Hz blinking
if ((HAL_GetTick() % 500) == 0) {
HAL_GPIO_TogglePin(LED_PORT, LED_PIN);
}
if (HAL_GetTick() - timeOfRun >= 1000) {
timeOfRun = HAL_GetTick();
count = 0;
printf("%ld ms\n", timeOfRun);
}
}
int main(void)
{
const char * hello_world = "Hello STM32\r\n";
/* HAL initialization */
HAL_Init();
/* Set the SYSCLK at maximum frequency (72 MHz) */
RCC_SystemClock_Config();
GPIO_Init();
GPIO_Output_Config();
ADC_Config();
MX_USART1_UART_Init();
// MX_USART2_UART_Init();
HAL_UART_Transmit(&huart1, (uint8_t *)hello_world, strlen(hello_world), HAL_MAX_DELAY);
printf("Characters: %c %c\n", 'a', 65);
printf("Decimals: %d %ld\n", 1977, 650000L);
printf("Preceding with blanks: %10d\n", 1977);
printf("Preceding with zeros: %010d\n", 1977);
printf("Some different radices: %d %x %o %#x %#o\n", 100, 100, 100, 100, 100);
printf("floats: %4.2f %+.0e %E\n", 3.1416, 3.1416, 3.1416);
printf("Width trick: %*d\n", 5, 10);
printf("%s\n", "A string");
while (true)
{
adcValue = ADC_Read();
if (adcValue > 2047)
{
/* Turn on yellow LED */
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_7, GPIO_PIN_SET);
/* Turn off red LED */
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_8, GPIO_PIN_RESET);
}
else
{
/* Turn off yellow LED */
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_7, GPIO_PIN_RESET);
/* Turn on red LED */
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_8, GPIO_PIN_SET);
}
printf("ADC (%d): %d\n", ++count, adcValue);
HAL_Delay(250);
}
return 0;
}
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) {
Error_Handler("SystemClock config error");
}
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK
| RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK) {
Error_Handler("SystemClock config error");
}
}
void RCC_SystemClock_Config(void)
{
RCC_ClkInitTypeDef rccClkInit;
RCC_OscInitTypeDef rccOscInit;
rccOscInit.OscillatorType = RCC_OSCILLATORTYPE_HSE;
rccOscInit.HSEState = RCC_HSE_ON;
rccOscInit.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
rccOscInit.PLL.PLLState = RCC_PLL_ON;
rccOscInit.PLL.PLLSource = RCC_PLLSOURCE_HSE;
rccOscInit.PLL.PLLMUL = RCC_PLL_MUL9;
if (HAL_RCC_OscConfig(&rccOscInit) != HAL_OK)
{
Error_Handler("RCC config error");
}
rccClkInit.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK |
RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
rccClkInit.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
rccClkInit.AHBCLKDivider = RCC_SYSCLK_DIV1;
rccClkInit.APB2CLKDivider = RCC_HCLK_DIV1;
rccClkInit.APB1CLKDivider = RCC_HCLK_DIV2;
if (HAL_RCC_ClockConfig(&rccClkInit, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler("RCC config error");
}
}
void GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_Config;
GPIO_Config.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_Config.Pull = GPIO_NOPULL;
GPIO_Config.Speed = GPIO_SPEED_FREQ_HIGH;
GPIO_Config.Pin = LED_PIN;
LED_PORT_CLK_ENABLE();
HAL_GPIO_Init(LED_PORT, &GPIO_Config);
/* Turn on PC13 */
HAL_GPIO_WritePin(GPIOC, GPIO_PIN_13, GPIO_PIN_SET);
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
}
void GPIO_Output_Config(void)
{
GPIO_InitTypeDef gpioInit;
__HAL_RCC_GPIOB_CLK_ENABLE();
gpioInit.Pin = GPIO_PIN_7 | GPIO_PIN_8;
gpioInit.Mode = GPIO_MODE_OUTPUT_PP;
gpioInit.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOB, &gpioInit);
}
void ADC_Config(void)
{
ADC_ChannelConfTypeDef adcChannelConf;
adcHandle.Instance = ADC1;
adcHandle.Init.DataAlign = ADC_DATAALIGN_RIGHT;
adcHandle.Init.ScanConvMode = ADC_SCAN_DISABLE;
adcHandle.Init.ContinuousConvMode = DISABLE;
adcHandle.Init.ExternalTrigConv = ADC_SOFTWARE_START;
if (HAL_ADC_Init(&adcHandle) != HAL_OK)
{
Error_Handler("ADC config error");
}
adcChannelConf.Channel = ADC_CHANNEL_0;
adcChannelConf.Rank = ADC_REGULAR_RANK_1;
adcChannelConf.SamplingTime = ADC_SAMPLETIME_1CYCLE_5;
if (HAL_ADC_ConfigChannel(&adcHandle, &adcChannelConf) != HAL_OK)
{
Error_Handler("ADC config error");
}
if (HAL_ADCEx_Calibration_Start(&adcHandle) != HAL_OK)
{
Error_Handler("ADC calibration error");
}
}
void HAL_ADC_MspInit(ADC_HandleTypeDef* hadc)
{
RCC_PeriphCLKInitTypeDef rccPeriphCLKInit;
GPIO_InitTypeDef gpioInit;
__HAL_RCC_ADC1_CLK_ENABLE();
rccPeriphCLKInit.PeriphClockSelection = RCC_PERIPHCLK_ADC;
rccPeriphCLKInit.AdcClockSelection = RCC_ADCPCLK2_DIV6;
HAL_RCCEx_PeriphCLKConfig(&rccPeriphCLKInit);
__HAL_RCC_GPIOA_CLK_ENABLE();
gpioInit.Pin = GPIO_PIN_0;
gpioInit.Mode = GPIO_MODE_ANALOG;
gpioInit.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &gpioInit);
}
uint16_t ADC_Read(void)
{
uint16_t adcVal;
HAL_ADC_Start(&adcHandle);
if (HAL_ADC_PollForConversion(&adcHandle, HAL_MAX_DELAY) == HAL_OK)
{
adcVal = HAL_ADC_GetValue(&adcHandle);
}
HAL_ADC_Stop(&adcHandle);
return adcVal;
}
void MX_USART1_UART_Init(void)
{
__HAL_RCC_USART1_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
GPIO_InitTypeDef GPIO_InitStruct = {0};
GPIO_InitStruct.Pin = GPIO_PIN_9;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
GPIO_InitStruct.Pin = GPIO_PIN_10;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
huart1.Instance = USART1;
huart1.Init.BaudRate = 115200;
huart1.Init.WordLength = UART_WORDLENGTH_8B;
huart1.Init.StopBits = UART_STOPBITS_1;
huart1.Init.Parity = UART_PARITY_NONE;
huart1.Init.Mode = UART_MODE_TX_RX;
huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart1.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart1) != HAL_OK)
{
Error_Handler("Falha na Inicialização da UART 1");
}
}
void MX_USART2_UART_Init(void)
{
__HAL_RCC_GPIOA_CLK_ENABLE();
GPIO_InitTypeDef GPIO_InitStruct = {0};
GPIO_InitStruct.Pin = GPIO_PIN_2 | GPIO_PIN_15;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
huart2.Instance = USART2;
huart2.Init.BaudRate = 115200;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart2) != HAL_OK)
{
Error_Handler("Falha na Inicialização da UART 2");
}
__HAL_RCC_USART2_CLK_ENABLE();
}
#define STDOUT_FILENO 1
#define STDERR_FILENO 2
int _write(int file, char *ptr, int len)
{
switch (file)
{
case STDOUT_FILENO:
HAL_UART_Transmit(&huart1, (uint8_t *)ptr, len, HAL_MAX_DELAY);
break;
case STDERR_FILENO:
HAL_UART_Transmit(&huart1, (uint8_t *)ptr, len, HAL_MAX_DELAY);
break;
default:
return -1;
}
return len;
}
void Error_Handler(const char *error)
{
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_6, GPIO_PIN_SET);
printf("Erro: %s\r\n", error);
for(;;);
}
__weak HAL_StatusTypeDef HAL_InitTick(uint32_t TickPriority)
{
HAL_SYSTICK_Config(SystemCoreClock /1000);
HAL_NVIC_SetPriority(SysTick_IRQn, TickPriority, 0);
return HAL_OK;
}
static inline uint32_t LL_SYSTICK_IsActiveCounterFlag(void)
{
return ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) == (SysTick_CTRL_COUNTFLAG_Msk));
}
uint32_t getCurrentMicros(void)
{
LL_SYSTICK_IsActiveCounterFlag();
uint32_t m = HAL_GetTick();
const uint32_t tms = SysTick->LOAD + 1;
__IO uint32_t u = tms - SysTick->VAL;
if (LL_SYSTICK_IsActiveCounterFlag()) {
m = HAL_GetTick();
u = tms - SysTick->VAL;
}
return (m * 1000 + (u * 1000) / tms);
}
Loading
stm32-bluepill
stm32-bluepill